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INTRODUCTION 
 
Neurofilament light (NFL) is gaining increasing 
attention as a potential biomarker of neuroaxonal 
injury which is the pathological substrate for 
permanent disability in various neurodegenerative 
diseases. Regardless of clinical diagnosis, high levels  

 

of NFL are general indicators of axonal damage. 
Accumulating evidence has indicated that the plasma 
NFL is useful for predicting and monitoring 
progression in various neurodegenerative diseases, 
including Alzheimer’s disease (AD) [1]. Increase in 
plasma NFL is well established in neurodegenerative 
pathology, but the genetic contribution to this change 
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ABSTRACT 
 
As a marker of neuroaxonal injury, neurofilament light (NFL) in blood is robustly elevated in many 
neurodegenerative conditions. We aimed to discover single nucleotide polymorphisms (SNPs) associated with 
longitudinal changes in plasma NFL levels that affect the risk of developing neurodegenerative disease and 
clinical disease progression. 545 eligible non-Hispanic white participants from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) with longitudinal plasma NFL data were included. Three SNPs (rs16840041, 
p=4.50×10-8; rs2269714, p=4.50×10-8; rs2269715, p=4.83×10-8) in CD1A were in high linkage disequilibrium (LD) 
and significantly associated with the increase in plasma NFL levels. We demonstrate a promoting effect of 
rs16840041-A on clinical disease progression (p = 0.006). Moreover, the minor allele (A) of rs16840041 was 
significantly associated with accelerated decline in [18F] Fluorodeoxyglucose (FDG) (estimate -1.6% per year 
[95% CI -0.6 to -2.6], p=0.0024). CD1A is a gene involved in longitudinal changes in plasma NFL levels and AD-
related phenotypes among non-demented elders. Given the potential effects of these variants, CD1A should be 
further investigated as a gene of interest in neurodegenerative diseases and as a potential target for 
monitoring disease trajectories and treating disease. 
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needs further research [2–4]. Previous studies 
suggested that the candidate biomarkers can be used 
as endophenotypes in genome-wide association study 
(GWAS) [5–7]. In a previous study, baseline plasma 
NFL data were used to explore genetic factors [8]. 
Since inter-individual variability may exist in the 
disease trajectories, cross-sectional data have 
limitations with respect to the evaluation of clinical 
disease progression. Longitudinal changes in plasma 
NFL may provide important insights into genetic 
mechanism underlying these diseases. All samples 
from the subjects in Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort were 
measured longitudinally for changes in plasma NFL 
levels. Thus, we can use the plasma NFL to carry out 
longitudinal tracking of AD-related indicators over 
extended periods of time. In this study, we present the 
first GWAS of the rate of change in plasma NFL 
among non-demented elders (cognitive normals (CN) 
or those diagnosed with mild cognitive impairment 
(MCI)). We hope to identify novel variants specific to 
the longitudinal changes in plasma NFL levels. 
 
RESULTS 
 
Characteristics of included subjects 
 
After quality control (QC), 545 non-Hispanic white 
participants from the ADNI with longitudinal plasma 
NFL data were included. Detailed information of 
included subjects is presented in Table 1. All available 
longitudinal plasma NFL data were included in the 
linear mixed effects models (adjusted for age at 
baseline, diagnosis, and marital status). We obtained a 
residual plasma NFL change rate for each individual. 
Continuous quantitative change rates were primary 
outcome measures used in the genetic association 
studies. 
 
Single nucleotide polymorphisms (SNPs) associated 
with the rate of increase in plasma NFL 
 
A total of 1,231,747 genotyped variants were included 
in GWAS. Three SNPs (rs16840041, p=4.50×10-8; 
rs2269714, p=4.50×10-8; rs2269715, p=4.83×10-8) were 
significantly associated with the rate of increase in 
plasma NFL (Figure 1A and Table 2). Other SNPs with 
suggestive associations are listed in Supplementary 
Table 1. Quantile-quantile (Q-Q) plot shows no 
evidence of population stratification, as most of the 
observed p-values do not deviate from the expected line 
(Supplementary Figure 3). The Haploview software was 
used to conduct linkage disequilibrium (LD) analysis 
between these SNPs. Rs16840041 was in high LD 
(r2>0.8) with other two SNPs (rs2269714 and 
rs2269715) in CD1A (Supplementary Figure 4). 

In the CD1A region, several SNPs in LD with 
rs16840041 showed values of p < 0.001 for the 
longitudinal changes in plasma NFL (Figure 1B). 
However, after controlling for the genotypes of 
rs16840041, no strong associations remained in this 
region (Figure 1C), indicating that all the associations in 
this locus were driven by the three SNPs. Moreover, we 
identified that the minor allele of rs16840041-A was 
associated with a significant increase in plasma NFL 
levels (Figure 2A). 
 
CD1A rs16840041-A affects the risk of clinical 
disease progression 
 
Figure 2B shows Kaplan–Meier survival curves for the 
probability of clinical disease progression in the different 
rs16840041 genotype subgroups. The GG group was 
significantly associated with longer estimated time of 
clinical disease progression (6.26 ± 0.19 years, 95% 
confidence interval (CI) 5.88-6.64), compared with the 
AA/AG group (4.86 ± 0.50 years, 95% CI 3.90–5.82,  
p = 0.006). In Cox regression models (adjusted for age, 
diagnosis and APOE4 status), the individuals with AA/AG  
genotype had higher risk of progression to AD (hazard 
ratio 1.63, 95% CI 1.12-2.36, p = 0.010) (Supplementary 
Table 2). 
 
Impact of rs16840041 on other AD-related 
phenotypes 
 
In the post hoc analyses, we identified 355 subjects in 
all diagnostic groups with longitudinal [18F] 
Fluorodeoxyglucose (FDG) data available for analysis. 
Subjects with AA/AG genotype showed significantly 
faster rates of [18F] FDG decline than did those with GG 
genotype (AA/AG vs GG, estimate -1.6% per year 
[95% CI -0.6 to 2.6], p=0.0024) (adjusted for baseline 
age, diagnosis, and APOE4 status). But for 11-item 
Alzheimer's Disease Assessment Scale (ADAS11), 
Mini-Mental State Examination (MMSE), and the 
volume of AD-related brain regions, we did not observe 
any significant differences in the rates of change 
between AA/AG and GG genotypes (Figure 3). 
 
DISCUSSION 
 
In this study, we identified significant associations 
between genetic variants and the rates of change in 
plasma NFL among non-demented elders. Three SNPs 
(rs16840041, rs2269714 and rs2269715) within CD1A 
in high LD were associated with increased plasma NFL 
levels. In the other longitudinal frameworks, individuals 
with the minor alleles showed a higher risk of cognitive 
decline, and the minor alleles (rs16840041, A; 
rs2269714, T; rs2269715, G) were significantly 
associated with an accelerated decline of [18F] FDG in 
the entire cohort. 
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Table 1. Demographic information of the studies subjects. 

Baseline diagnosis HC MCI Total 
n 224 321 545 
Age at baseline (years), mean ± SD  74.81±5.36 71.69±7.35 72.85±6.78 
Gender, male/female 118/106 189/132 307/238 
APOE4 status (0/1/2) 80/24/2 172/118/31 340/169/36 
Follow-up years, mean ± SD 4.85±0.57 3.75±1.81 4.20±1.10 
Mean annual changes in plasma NFL levels (pg/ml·year), mean ± SD −0.11±1.56 −0.22±1.51 −0.17±1.51 

Abbreviations: AD, Alzheimer’s disease; APOE, Apolipoprotein E; HC, healthy control; MCI, early mild cognitive impairment; 
NFL, neurofilament light; SD, standard deviationa. 

 

 
 

Figure 1. Genome-wide signal intensity (Manhattan) plots showing the -log10 (p value) for individual single nucleotide polymorphisms (A). 
Regional association results for the 158 Mb to 158.6 Mb region of chromosome 1 (B). Association results for 158 Mb to 158.6 Mb region of 
chromosome 1 controlling for rs16840041 (C). 
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The three variations are located on chromosome 
1q23.1 within CD1A region. The CD1A gene encodes 
a member of the CD1 family (CD1A, CD1B, CD1C, 
CD1D, and CD1E) of transmembrane glycoproteins 
[9]. CD1A proteins are important molecules 
presenting glycolipid and lipid antigens of microbial 

origin or themselves to T cells [10, 11]. Thus, T cells 
can sense and respond to changes in lipid repertoire 
(inflammation, infection and malignancies) [12]. 
 
Self-reactive T cells (specific for self-glyco-
sphingolipids) were identified in multiple sclerosis 

 

 
 

Figure 2. The A allele is associated with a significant increase in plasma NFL (P<0.001), P value in the plot was computed from linear 
regression model after adjusting for age, diagnosis, and APOE4 status (A). Kaplan–Meier survival curves for the probability of clinical 
disease progression according to different rs16840041 genotypes. Numbers of individuals at risk at each time interval are shown in the 
table. Survival time was calculated as the interval from the initial baseline evaluation to the clinical disease progression. AG/AA genotype 
is associated with an increased risk of clinical disease progression (P = 0.006) (B). 

 

 
 

Figure 3. Comparison of rates of change in ADAS11, MMSE, FDG, entorhinal cortex volume and hippocampus volume, expressed as 
differences in annual percentage changes, with 95% CIs, between AA/AG and GG genotypes. 
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Table 2. Top SNPs associated with the rate of change in plasma NFL. 

SNP CHR Gene Observed MAF SNP Type/Location Beta P values 
rs16840041 1 CD1A 0.06 intron 1.042 4.50×10-8 
rs2269714 1 CD1A 0.06 intron 1.042 4.50×10-8 
rs2269715 1 CD1A 0.06 intron 1.040 4.83×10-8 

Abbreviations: NFL, neurofilament light; CHR, chromosome; MAF, minor allele frequency; SNP, single nucleotide 
polymorphism. 
 
 
(MS) patients. These T cells were restricted by all 
types of CD1 molecules [13]. CD1A expression was 
significantly increased in MS patients [14, 15]. 
Moreover, Caporale et al.’ study suggested that CD1A 
gene polymorphisms are associated with susceptibility 
to MS [16]. The increased CD1A expression can cause 
inappropriate presentation of self-lipid antigen and 
may be one of the pathogenetic mechanisms leading to 
MS. In addition to self-proteins, self-glycolipids may 
represent the potential source of autoantigens 
recognized by T cells in autoimmune diseases [13]. 
Once activated, CD1self-reactive T cells could 
regulate both cell-mediated and humoral immune 
responses [17]. It has been reported that several 
autoimmune diseases and neurodegenerative diseases 
(AD, Parkinson disease (PD), and frontotemporal 
dementia (FTD)) share the same genetic pathways 
[18–20]. 
 
Previous studies have identified that the minor allele 
(T) of rs2269714 elevated the expression levels of 
CD1A in blood samples [21]. The elevated expression 
of CD1A was associated with peripheral inflammation 
(skin inflammation, ulcerative colitis, and rheumatoid 
arthritis, etc.) [22–24]. Secreted by CD1A-reactive T 
cells, a variety of cytokines (IL-13, IL-22, IL-17A, 
TNF-α, IFN-γ and GM-CSF et al.) participated in 
inflammation, wound healing and defense against 
infection [24–26]. Inflammatory mediators or 
cytokines that are induced at the site of inflammation 
can enter the blood. These inflammatory signals could 
spread into central nervous system (CNS) through 
microglia [27]. Macrophages and microglia (cells of 
the mononuclear phagocyte lineage) play key roles in 
inflammation of chronic neurodegenerative disease 
[28]. It has been reported that peripheral immune 
stimuli can lead to differential epigenetic 
reprogramming of macrophages and microglia, cause 
long-term alterations in the brain immune response, 
and then affect the severity of miscellaneous 
neurodegenerative diseases, including AD [29]. 
Interestingly, this immune memory can also be elicited 
by individual cytokines [29]. In miscellaneous 
neurodegenerative diseases (AD, PD, and amyotrophic 
lateral sclerosis (ALS)), neuroinflammation is typified 

by a reactive morphology of glial cells (astrocytes and 
microglia) [30]. Moreover, the roles of peripheral 
inflammation in the development of multi-infarct 
dementia and AD have also been reported [31]. In 
summary, previous studies have indicated that the 
CD1A-related immune activation and peripheral 
inflammation may be important mechanisms 
contributing to neurodegenerative diseases.  
 
As an important neuroimaging biomarker of metabolic 
abnormalities, [18F] FDG-PET can reflect the 
magnitude of cerebral hypometabolism [32]. 
Peripheral inflammation has been reported to reduce 
glucose metabolism in human medial temporal lobe 
(MTL) and impair human spatial memory [33]. But 
the molecular mechanism through which rs16840041 
could affect human MTL function has not been 
studied yet. The decline rates of [18F] FDG were 
significantly associated with minor allele (A), further 
indicating the potential role of these SNPs in 
neurodegenerative diseases. Moreover, previous 
studies suggested that anti-CD1a antibody can reduce 
inflammation, indicating that blocking the interaction 
of CD1a with receptors on T cells could be a potential 
treatment for neurodegenerative diseases [34]. While 
the specific biological pathways underlying the role of 
CD1A in the vulnerability of neurodegenerative 
diseases require further investigation, the results 
reported here suggest that CD1A may be important for 
monitoring dementia progression at the individual 
level and evaluating early indicators of dementia. 
Moreover, those results also suggest that CD1A 
should be considered as a potential therapeutic target 
in dementia. 
 
Limitations 
 
Several potential limitations of this report are as 
follows. First, the GWAS was conducted with modest 
samples sizes which restricted stratified analyses for 
each diagnostic group. Furthermore, we didn’t 
replicate these findings in an independent cohort due 
to limited data. Third, our sample was restricted to 
non-Hispanic white participants. We didn't explore 
the diversity among different populations. 
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METHODS 
 
ADNI dataset 
 
All participants were from the ADNI database which 
included three protocols (ADNI 1, ADNI 2 and ADNI 
Grand Opportunities (ADNI GO)). The ADNI database 
has recruited more than 1500 participants, including 
normal, MCI and AD subjects at present. ADNI was 
launched in 2003 by the National Institute on Aging, the 
National Institute of Biomedical Imaging and 
Bioengineering, the Food and Drug Administration, 
private pharmaceutical companies and nonprofit 
organizations. ADNI data (MRI and PET images, 
genetics, cognitive tests, and data on cerebrospinal fluid 
(CSF) and blood biomarkers) are disseminated by the 
Laboratory for Neuro Imaging at the University of 
Southern California. Informed consent was obtained 
from study participants, and the study was approved by 
the local institutional review board at each participating 
site. More information is available on the website of 
ADNI (http://adni.loni.usc.edu/). 
 
Participants 
 
In this study, 545 subjects (healthy controls (HC) 224, 
MCI 321 at baseline) whose data met all QC criteria 
were included from the ADNI cohort. The demographic 
data and rate of change in plasma NFL in each group 
were summarized in Table 1. 
 
The full cohort with GWS data and at least one follow-
up for plasma NFL data included 614 participants. All 
the analyses were restricted to non-Hispanic white 
participants (n=559) to reduce the potential bias from 
population stratification. Population substructure and 
cryptic relatedness were checked with genomic identity-
by-descent and multidimensional scaling (MDS) 
components and 5 participants were removed 
(Supplementary Figure 1). The QC of the rate of change 
in plasma NFL resulted in 545 valid samples. Moreover, 
ADNI samples showed tight clustering with individuals 
of European ancestry in MDS plot overlaid on HapMap 
samples (Supplementary Figure 2). 
 
Plasma measurements and QC 
 
Plasma NFL was analyzed using the ultrasensitive 
Single Molecule array (Simoa) technique as previously 
described [35]. The assay used a combination of 
monoclonal antibodies and purified bovine NFL as a 
calibrator. Analytical sensitivity was < 1.0 pg/mL, and 
the NFL levels in all tested samples were above the 
detection limit. Changes in the NFL levels of the 
subjects were measured longitudinally. Further QC was 
performed to reduce the potential influence of extreme 

outliers on statistical results. Mean (-0.02 pg/ml·year) 
and standard deviations (SD) (1.97 pg/ml·year) of 
longitudinal rates of change in plasma NFL levels were 
calculated. Participants who had extreme outliers (<3-
fold or >3-fold SD from the mean value) were removed 
from the analysis. This step removed 9 subjects. 
 
Genotyping and QC 
 
The ADNI-1, ADNI-2, and ADNI-GO samples were 
genotyped with the Human 610-Quad BeadChip, 
Illumina Human Omni Express BeadChip and Ilumina 
Omni 2.5M BeadChip, respectively. PLINK software 
(version 1.07) was used in this step. The following 
criteria were utilized to perform a stringent QC 
assessment: call rates for individuals and SNPs were 
restricted to> 95%; minor allele frequencies (MAF) 
were restricted to > 0.05; p value for Hardy-Weinberg 
equilibrium test was restricted to > 0.001. An APOE 
genotyping kit was used to identify APOE alleles 
(polymorphisms rs7412 and rs429358) [36]. 
 
Clinical disease progression 
 
In the longitudinal study, HC and MCI participants 
were classified into either stable group or group of 
clinical disease progression (cognitive decline). 
Participants were designated as having clinical disease 
progression if their clinical classification or global 
CDR/MMSE score changed (HC subjects converted to 
MCI or AD, or their global CDR scores rose to 0.5 or 
more; MCI subjects lost more than 3 points between 
first and last MMSE administrations, converted to AD 
at follow-up, or got a score less than 24 on the last 
MMSE) [37–39]. If the above criteria have not been met 
at follow-up, participants were deemed stable. 
 
Post hoc analyses of other AD-related phenotypes 
 
Genome-wide significant SNPs were further evaluated for 
associations with the rate of change in ADAS11, MMSE, 
[18F] FDG and the volume of AD-related brain regions 
(hippocampus and entorhinal cortex) using ADNI data. 
Designed to assess the severity of cognitive impairment, 
ADAS11 involves constructional and ideational praxis, 
language production and comprehension, learning and 
memory, and orientation [40]. The MMSE provides a 
global measure of mental status and involves language, 
recall, attention and calculation, orientation as well as 
registration [41]. Brain glucose metabolism, measured by 
[18F] FDG-PET, is associated with cognitive state [42]. 
[18F] FDG-PET scans were acquired and pre-processed 
using regions of interest (ROIs) (angular, temporal, and 
posterior cingulate) approach as described previously 
[43]. These ROIs were averaged together into a composite 
ROI which was used in [18F] FDG analyses. The volume 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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of AD-related brain regions has been reported to be 
closely associated with cognitive state. The segmentation 
and analysis of cerebral images were performed using 
FreeSurfer version 5.1 (http://surfer.nmr.mgh.harvard.edu/). 
Longitudinal brain MRI scans and clinical data were 
downloaded from the ADNI public database 
(http://adni.loni.usc.edu/). 
 
Statistical analyses 
 
Linear mixed models were utilized to compute 
longitudinal rates of change in the plasma NFL levels. 
These models were adjusted for age (P<0.001), diagnosis 
(P<0.001), and marital status (P<0.001). From these 
models, we estimated the mean rates of change for the 
whole samples. Using these longitudinal rates, we then 
fitted linear regression models using PLINK (version 
1.07) [44]. An additive genetic model (i.e., dose-
dependent effect of the minor allele) was utilized in those 
genetic association studies. As described above, the 
phenotype was the plasma NFL change rates extracted 
from the mixed effects models after adjustment for age, 
diagnosis, and marital status. The association analysis was 
additionally adjusted for the first two principal 
components (PCs) calculated by genome-wide complex 
trait analysis (GCTA) [45]. The thresholds of p<1×10−5 
and p<5×10−8 were used for suggestive and genome-wide 
significant associations respectively [46]. Genome-wide 
associations were visualized with the R (version 3.5.1) 
package qqman [47]. Regional associations were 
visualized with the Locus Zoom web tool [48]. The 
association of mean annual changes in plasma NFL and A 
allele was tested using a linear regression model adjusting 
for age, diagnosis, and APOE4 status. 
 
Kaplan-Meier survival analysis of clinical disease 
progression was plotted based on rs16840041 genotypes. 
Log-rank test was used to compare the survival 
distributions of the different genotype subgroups. Cox 
proportional hazards models (adjusted for age, diagnosis, 
APOE4 status) were used to test the predictive ability of 
the rs16840041genotypes for clinical disease progression. 
Linear mixed models were also used to estimate 
associations between the rs16840041 genotypes and the 
change rates of other AD-related phenotypes. All models 
were fitted with the lmer function in the R lme4 package 
(version 1.1-18-1). Estimates and 95% CIs were based on 
parametric bootstrapping of the fitted models by use of the 
sim function in the arm package (version 1.10-1) with 10 
000 replicates [49]. 
 
CONCLUSIONS 
 
In summary, we identified the associations of the three 
SNPs (rs16840041, rs2269714 and rs2269715) within 
CD1A with the increase in plasma NFL levels, faster 

decline of [18F] FDG and higher risk of cognitive 
decline among non-demented elders. These findings 
provide insights into the relationship of genetic variants 
with change rates of plasma NFL and AD-related 
phenotypes. The CD1A should be further investigated as 
a gene of interest in neurodegenerative diseases and as a 
potential target for monitoring disease trajectories and 
treating disease. 
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SUPPLEMENTARY MATERIALS 
 
 
Supplementary Figures 

 
 

Supplementary Figure 1. MDS plot of ADNI non-Hispanic Caucasian samples. Samples seemed to form loose clusters and two 
samples were outliers based on the second MDS component (at bottom of plot; 031_S_4032 and 031_S_4203), suggesting potential 
population substructure. To check for cryptic relatedness, which can confound GWAS studies, pairwise identity-by-descent fraction (π) 
between each pair of samples were calculated using PLINK. Three related sample pairs were identified (137_S_4466 and 021_S_0159, π = 
0.50; 023_S_0058 and 023_S_4035, π = 0.48; 024_S_2239 and 024_S_4084, π = 0.42), which are probably first-degree relatives. Optionally, 
we remove one member of each pair. No other cryptic relations were identified from the sample, at a threshold of π > 0.05. 
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Supplementary Figure 2. MDS plot of ADNI samples overlaid on HapMap samples. The ancestry of the HapMap participants is 
shown by the point color. The outlying point represents Participant 116_S_1315 who is likely of mixed ancestry. Abbreviations: MDS, 
multidimensional scaling; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ASW, African ancestry in Southwest USA; CEU, Utah residents 
with Northern and Western European ancestry from the CEPH collection; CHB, Han Chinese individuals from Beijing, China; CHD, Chinese in 
Metropolitan Denver, Colorado; GIH, Gujarati Indians in Houston, Texas; JPT, Tokyo, Japan; LWK, Luhya in Webuye, Kenya; MEX, Mexican 
ancestry in Los Angeles, California; MKK, Maasai in Kinyawa, Kenya; TSI, Tuscans in Italy; YRI, Yoruba in Ibadan, Nigeria. 
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Supplementary Figure 3. The quantile-quantile (QQ) plot shows the negative logarithm of the observed and the expected p-
value for each SNP. 
 

 
 

 

 
Supplementary Figure 4. Linkage-disequilibrium (LD) analysis of the variants rs16840041, rs2269714 and rs2269715 in CD1A. 
Pairwise linkage disequilibrium analysis shows r2 (×100) values. The LD plots were generated using the Haploview software v4.2. 
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Supplementary Tables 
 
 
Supplementary Table 1. Suggestive SNPs in GWAS. 

CHR BP SNP MAF Closest Gene SNP Type/Location P values 
17 18055903 rs74361457 0.017 MYO15A intron 9.52E-07 
17 80461935 rs8078417 0.31 NARF intergenic 1.75E-06 
7 66903871 rs62465226 0.354 LOC105375337 intergenic 2.51E-06 
7 66904395 rs6948216 0.393 LOC105375337 intergenic 2.51E-06 
7 66908992 rs4618582 0.404 LOC105375337 intergenic 2.51E-06 
7 66902955 rs7785167 0.413 STAG3L4 intergenic 3.16E-06 
7 66898482 rs4357188 0.355 STAG3L4 intergenic 4.05E-06 
7 66901317 rs12666354 0.358 LOC105375337 intergenic 4.05E-06 

17 18227081 rs921986 0.323 SMCR8 intron 6.27E-06 
17 18164404 rs2605142 0.2963 MIEF2 intron 8.30E-06 
17 18228605 rs4925172 0.324 SMCR8 intron 9.11E-06 
17 18231998 rs1979276 0.324 SHMT1 intron 9.11E-06 
7 66896600 rs6460344 0.127 LOC105375337 intergenic 9.35E-06 

Abbreviations: BP, base pair (variant position); CHR, chromosome; MAF, minor allele frequency; SNP, single nucleotide 
polymorphism 
 
 
 
Supplementary Table 2. Baseline demographic characteristics and rs16840041 genotypes as predictors of time to 
clinical disease progression. 

Characteristic Hazard ratio (95% CI)  Wald χ2 1 p value 

genotype 1.63(1.12–2.36) 6.60  0.010  
age 1.03(1.01–1.05) 6.66  0.010  
diagnosis 1.45(1.24–1.70) 20.63  <0.001 
APOE4 + 1.72(1.36–2.05) 24.04  <0.001 

Cox proportional hazard models were used to assess the ability of demographic variables (age, diagnosis, and APOE4 status) 
to predict clinical disease progression of AD over the 1-10 year follow-up period.  
Abbreviations: CI, confidence intervals; APOE, apolipoprotein E. 
 


